

Problem 1.

/21

When there are multiple choices in the following, select all statements that are true.

- 1. Consider the discrete-time switched system $x(k+1) = A_{\sigma(k)}x(k)$, $x(k) \in \mathbb{R}^3$ where $\sigma(k) \in \{1, 2\}$.
 - If $\exists P \in \mathbb{R}^{3\times 3}$, $P = P^T > 0$ such that

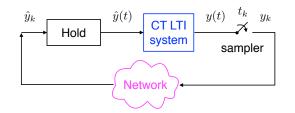
$$A_1^T P A_1 - P < 0$$
 and $A_2^T P A_2 - P < 0$

then the system is exponentially stable.

 \bigcirc If the system is exponentially stable, then there is $P \in \mathbb{R}^{3 \times 3}$, $P = P^T > 0$ such that

$$A_1^T P A_1 - P < 0$$
 and $A_2^T P A_2 - P < 0$

- \bigcirc If Spec(A_1) = {1 + j, 1 j, 0}, then the system cannot be exponentially stable.
- 2. Consider the LTI system $x(k+1) = Ax(k), x(k) \in \mathbb{R}^n$.
 - If there is a matrix $P = P^T > 0$ such that $A^T P A P = -I$, then, for all $x(0) \in \mathbb{R}^n$, x(k) is bounded.
 - If, for all $x(0) \in \mathbb{R}^n$, $\lim_{k \to +\infty} x(k) = 0$, then $\exists \alpha > 0, \rho \in [0,1)$ such that $||x(k)|| \le \alpha \rho^k ||x(0)||$, $\forall x(0) \in \mathbb{R}^n$.
 - \bigcirc If x(k) is bounded for all $x(0) \in \mathbb{R}^n$, then there is a matrix $P = P^T > 0$ such that $A^T P A P = -I$.
- 3. Consider the NCS given in the figure, characterized by packet dropouts, network-induced delay $\tau=0$, and constant sampling period T>0.



CT LTI system:
$$\begin{cases} & \dot{x} = Ax + Bu \\ & y = Cx \end{cases}$$

As seen in the lectures, the discrete-time NCS model is

$$z_{k+1} = \psi_{\theta_k} z_k, \quad z_k = \begin{bmatrix} x_k \\ \hat{y}_{k-1} \end{bmatrix}, \quad \psi_{\theta} = \begin{bmatrix} e^{AT} + \theta \Gamma(T - \tau)BC & e^{A(T - \tau)}\Gamma(\tau)B + \frac{(1 - \theta)}{\theta}\Gamma(T - \tau)B \\ \theta C & \frac{(1 - \theta)I}{\theta} \end{bmatrix}$$

where $\Gamma(s) = \int_0^s e^{At} dt$ and $\theta_k \in \{0, 1\}, k = 0, 1, 2, \dots$ Assume that the asymptotic packet dropout rate $r \in [0, 1]$ exists.

If r = 0.5 and there are $P = P^T > 0$ and $\alpha, \alpha_0, \alpha_1$ such that

$$\sqrt{\alpha_0 \alpha_1} > \alpha > 1$$
, $\psi_0^T P \psi_0 \le \alpha_0^{-2} P$, $\psi_1^T P \psi_1 \le \alpha_1^{-2} P$

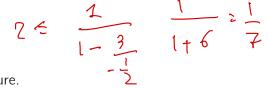
then the NCS is exponentially stable.

If r=1 the NCS cannot be asymptotically stable. If there is $P=P^T>0$ such that

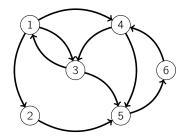
If there is
$$P = P^T > 0$$
 such that

$$\psi_0^T P \psi_0 \le e^3 P$$
, $\psi_1^T P \psi_1 \le e^{-\frac{1}{2}} P$

then the NCS is exponentially stable for all $r < \frac{1}{7}$.



4. Let A be the binary adjacency matrix of the digraph in the figure.

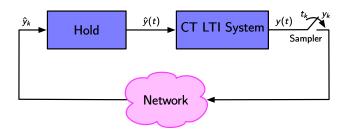


- The element (4,2) of A^5 is nonzero. The element (4,2) of $\sum_{k=0}^4 A^k$ is nonzero.
- 5. Let G be a weighted graph with n > 2 nodes and let L be its Laplacian matrix.
 - If G is directed and a node v is a sink, then $L_{v,v} = 0$.
 - \bigcirc If G is undirected and connected, then the eigenvalue $\lambda = 0$ of L has algebraic multiplicity 2.
 - If G is directed and contains a globally reachable node, then all and only equilibria of $\dot{x} = -Lx$ are the states $\bar{x} = \alpha \mathbb{1}_n$, $\alpha \in \mathbb{R}$.
- 6. Let T = (V, E) be an undirected graph with $V = \{1, 2, ..., 10\}$. Assume T is a tree.
 - \bigcirc T has 10 edges.
 - \nearrow Removing an edge from T makes T disconnected.
 - X T is connected.
- 7. Assume that the digraph G with vertex set $V = \{1, 2, ..., 5\}$ is weakly connected and has a strongly connected component induced by the vertices {1, 2, 3}. Then,
 - \bigcirc G contains the cycle (1, 2), (2, 3), (3, 1).
 - \bigcirc The subgraph induced by the set of vertices $\{1, 2, 4\}$ is strongly connected.
 - \nearrow The condensation graph of G has at least two nodes.

Problem 2.

/24

Consider the NCS in the figure below



where the LTI system is the first-order model

$$\begin{cases} \dot{x} = x + 2u \\ y = cx \end{cases}.$$

1. Assume that the sampling time $T = \log(4)$ is constant and the network induced delay $\tau < T$ is constant but unknown. Compute the inequalities characterizing all values of c and τ for which the NCS is asymptotically stable. Find then all values of c, if any, guaranteeing asymptotic stability for $\tau = \log(2)$.

Hint: Recall the Jury's criterion: the roots of $\phi(\lambda) = \lambda^2 + \alpha\lambda + \beta$ verify $|\lambda| < 1$ if and only if

$$\beta > -\alpha - 1$$

 $\beta > \alpha - 1$.
 $\beta < 1$

The discrete-time NCS model with state $2\pi = [x | t_K), \hat{y}_{kn}]$ is given by

$$\frac{2_{\kappa+1} = \psi(T, \tau)}{\psi(T, \tau)} = \begin{bmatrix} e^{AT} + \Gamma(T-\tau)BC & e^{A(T-\tau)}\Gamma(\tau)B \\ C & O \end{bmatrix}$$

vehere A=1, B=2

Computation S

$$e^{AT} = log 4$$

 $e^{A(T-z)} = e^{T} - Az = -z$
 $e^{A(T-z)} = e^{T} - Az = -z$
 $e^{AT} - Az = -z$
 $e^$

The chrochtenistic polynomial of $\begin{bmatrix} \Psi_{11} & \Psi_{12} \\ 10 & 0 \end{bmatrix}$ is Let $(1I - \begin{bmatrix} \Psi_{11} & \Psi_{12} \\ 10 & 0 \end{bmatrix}) = \lambda^{2} - \Psi_{11}\lambda - C \Psi_{12}$

By applying Jury's enterior, one bas

$$\begin{cases} -c \, \psi_{12} > \psi_{11} - 1 \\ -c \, \psi_{12} > -\psi_{11} - 1 \end{cases} \qquad \begin{cases} c \, \psi_{12} < 1 - \psi_{11} \\ c \, \psi_{12} < 1 + \psi_{11} \\ c \, \psi_{12} > -1 \end{cases}$$

$$\begin{cases} 8 \, c \, (1 - e^{-2}) < 1 - 4 - 8c \, e^{-2} + 2c = -3 - 8c \, e^{-2} + 2c \quad (*) \\ 8 \, c \, (1 - e^{-2}) < 1 + 4 + 8c \, e^{-2} - 2c = 5 + 8c \, e^{-2} - 2c \quad (**) \\ 8 \, c \, (1 - e^{-2}) > -1 \end{cases}$$

$$For \, z = \log(2), \, e^{-2} = \frac{1}{e \log(2)} = \frac{1}{2}$$

 $(*) \rightarrow 8c(1-\frac{1}{2}) < -3 - \frac{8}{2} < +2c \rightarrow 4c < 3 - 2c - 3 6c < -\frac{1}{2}$ $(**) \rightarrow 4c < 5 + 4c - 2c \rightarrow 4c < 5 \rightarrow c < \frac{5}{2}$ $(**) \rightarrow 6c < 5 \rightarrow c < \frac{5}{2}$ $(**) \rightarrow 6c < 5 \rightarrow c < \frac{5}{2}$

(AXX) >> 4C>-1~>C>-{ No volue of C ventiles CR-{ and

2. Assume now that $T = \log(4)$, c = 1 but the delay τ_k is time-varying in the interval [0.1, 0.2]. Give sufficient conditions for certifying the exponential stability of the NCS through a quadratic Lyapunov function.

The NCS is exponentially stable if $\exists P=P^T > 0$, $P \in \mathbb{R}^{2\times 2}$ and v > 0 such that

 $\Psi(T, z)^{7}P\Psi(T, z)-P \leq -VI$ $\forall z \in Co. 1, o. z$]

The lyapunar function certifying exponential stability is $V(x_{R}) = x_{R}^{7}Px_{R}$

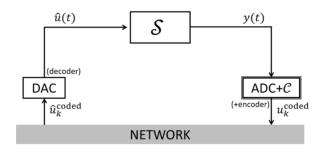
Problem 3.

/15

Consider the first-order continuous-time system ${\cal S}$ with dynamics

$$\dot{x} = \frac{1}{2}x + 2u$$

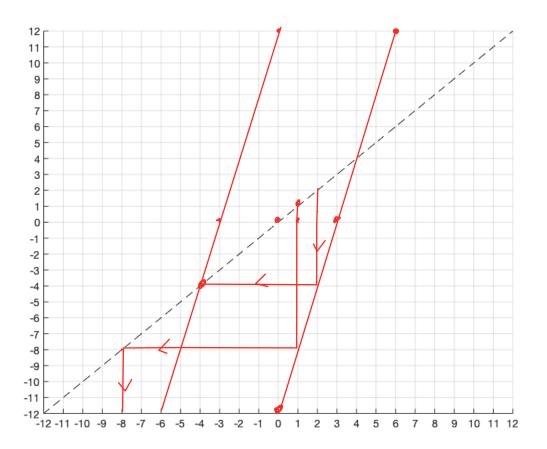
along with the NCS shown in the figure below, where the network is ideal. Assume the system is controlled in a sample-and-hold fashion, that is $u(t) = u_k$ for $t \in [kT, (k+1)T)$, $k \ge 0$. Moreover, assume that $u_k \in \mathcal{U}$, where \mathcal{U} contains 2^{N_B} values.



1. Compute the minimum rate $\frac{N_B}{T}$ required to make the system boundable. For $T=2\log(4)=2.7726$ s, compute the minimum number of bits N_B to be transmitted within each sampling interval to make the system boundable.

$$a = \frac{1}{2}b = 2$$
 $\frac{N_B}{T} \ge a$. $log_2 e = a$. $1/4/27 = 0.2214$
 $N_B \ge 0.7214 \cdot T = 1.999$ and, being $N_B \ge 0$ integer, one has $N_B = 2$

2. Set $T = 2\log(4)$ s, and assume that $N_B = 1$. Using the control law $u_k = -\operatorname{sign}(x_k)$, show the properties of the state trajectories using the graphical method. Plot the results in the graduated figure below, starting at least from $x_0 = 1$ and $x_0 = 2$.



· DT system!

$$x^{+} = f \times + g \quad \text{if} \quad f = e^{aT} \quad f = e^{aT} \quad \text{if} \quad (1 - e^{aT})$$

$$1 = \frac{1}{2} \quad \text{if} \quad (1 - e^{aT})$$

$$2 = \frac{1}{2} \quad (1 - 4) = 12$$

- Closed-hap dynamics: $\begin{cases}
 f \times k q & \text{if } X_k \ge D \\
 X_{k+1} = \begin{cases}
 f \times_k + g & \text{if } X_k \ge D
 \end{cases}$
- X u+1 ? { 4 x u -12 if x u ≥0 4 x u +12 if x u <0

. equilibril Xx = 4 and Xx = -4. . For short Il Xo, togechenies are diverging

The control box is given by
$$\begin{aligned}
u_{m_3x} &= 1 & \text{if } x \leq \overline{x}_1 \Rightarrow x \leq -2 \\
\overline{u}_1 &= \frac{1}{3} & \text{if } \overline{x}_1 < x \leq \overline{x}_2 \Rightarrow -2 < x \leq 0 \\
5(x) &= \begin{cases}
\overline{u}_1 &= \frac{1}{3} & \text{if } \overline{x}_2 < x \leq \overline{x}_3 \Rightarrow 0 < x \leq 2 \\
\overline{u}_2 &= -\frac{1}{3} & \text{if } \overline{x}_3 < x \Rightarrow x > 2
\end{aligned}$$

$$\frac{u_2 = -\frac{1}{3}}{\overline{u_3} = -1} \quad \text{if} \quad \frac{x_2 < x \le x_3}{\sqrt{3}} \quad 0 < x \le 2$$

and the positively invariant set is

[:1,1] 3. Set $T = 2\log(4)$ s, $N_B = 2$ and $U = \{-1, 1\}$. Compute the control law for guaranteeing boundability when one operates at the rate limits. Compute the corresponding positively invariant set.

The control bow of the vote limits is given by

$$\overline{u}_{i} = u_{max} + \frac{c}{4-1} \left(u_{min} - u_{msx} \right) = 4 - \frac{2i}{3} - \sqrt{\frac{u_{o}}{u_{i}}} = 1 - \frac{2}{3} = \frac{1}{3}$$
Set also for $i = 0, 2, ..., 4$

$$\overline{u}_{i} = 1 - \frac{2}{3} = \frac{1}{3}$$

$$\overline{u}_{i} = 1 - \frac{2}{3} = \frac{1}{3}$$

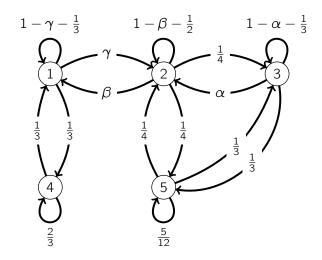
$$\overline{u}_{i} = 1 - \frac{2}{3} = -\frac{1}{3}$$

$$\overline{X}_{i} = -\frac{b}{a} u_{max} + \frac{b}{a} \left(u_{max} - u_{min} \right) \frac{\dot{v}}{N} = -4 + \dot{v} \cdot \frac{2 \cdot \dot{v}}{A} = -4 + 2 \dot{v}$$

Problem 4.

/20

Let A be the adjacency matrix of the digraph G in the figure below and consider the discrete-time system x(k+1) = Ax(k).



1. Set $\alpha = \beta = 0$. Compute all values of $\gamma > 0$ such that A is stochastic and the system reaches a consensus state, as $k \to +\infty$. Compute also the consensus value.

A is stochastic and the subgraph undered by GRN is aperadic Lb X -> W/X(0) 215, W= [D, W, W, D Ws] Compulstion of w

$$\begin{bmatrix}
0 & w_2 & w_3 & 0 & w_3 \\
0 & \frac{1}{2} & \frac{1}{4} & 0 & \frac{1}{3} \\
0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & \frac{1}{4} & \frac{1}{3} & 0 & \frac{1}{3}
\end{bmatrix}$$

$$\begin{cases}
0 = 0 \\
\frac{1}{2}w_{2} + \frac{1}{4}w_{5} = w_{2} \\
\frac{1}{4}w_{2} + \frac{2}{3}w_{3} + \frac{1}{3}w_{5} = w_{3}
\end{cases}$$

$$\frac{1}{4}w_{2} + \frac{2}{3}w_{3} + \frac{1}{3}w_{5} = w_{3}$$

$$\frac{1}{4}w_{2} + \frac{1}{3}(2w_{2}) = \frac{1}{3}w_{3}$$

$$0 = 0$$

$$\frac{1}{4}w_{2} + \frac{1}{3}w_{3} + \frac{1}{3}w_{5} = w_{5}$$

$$\frac{1}{4}w_{2} + \frac{1}{3}w_{3} = \frac{7}{12}w_{5}$$

$$\frac{1}{4}w_{2} + \frac{1}{3}w_{3} = \frac{7}{12}w_{5}$$

From the second equation (neeping u_2 is free passweter) $\frac{1}{3} u_3 = \left(\frac{1}{4} + \frac{2}{3}\right) u_2 \rightarrow u_3 = 3 \frac{11}{12} u_2 = \frac{4}{4} u_2$ $\frac{3+8}{12}$

From the third excestion we obtain the same, as expected

From WIS= 1 whe have (1+ 1/4 +2) wz=1 -> 1/2 = 9/23

2. Compute the values of α , β , and γ such that the digraph G is the output of the Metropolis-Hasting algorithm.

The underlying undereted graph is

1 - - 3 Hence W. 2 - - 1 max (d(1), d(2)) + i

- 1 the gaves B-8 = 1. Therease, in G, the weights

Wezz and Wzz must be identical. Therefore $\alpha = \frac{1}{4}$.

3. Assume that nodes are sensors, each storing a noisy sample $y_i = \theta + v_i$ $i = 1, 2, \ldots, 5$ of a common scalar parameter θ . The random variables v_i are independent and Gaussian with zero mean and variance $\sigma_i^2 > 0$. Describe how to use the digraph G obtained in point 2 for computing the BLUE estimate $\hat{\theta}$ of θ through distributed computations. Provide also the expression of $\hat{\theta}$.

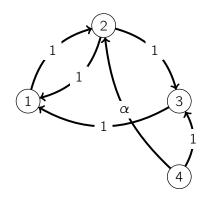
For each node i run two average consumes algorithms with united states $x_i(0) = G_i^{-2} G_i$ and $\hat{x}_i(0) = G_i^{-2}$.

Then, each node computes $\hat{G}_i = \underbrace{x_i(\infty)}_{\hat{x}_i(\infty)}$. Indeed, the $\hat{X}_i(\infty)$ BLUE estimate can be centhen as $\hat{G} = \frac{1}{5} \sum_{i=1}^{5} \sigma_i^{-2} g_i^{-2}$

Problem 5.

/15

Consider the Laplacian flow $\dot{x} = -Lx$, $x(0)^T = \begin{bmatrix} 2 & 4 & 4 \end{bmatrix}$ where L is the Laplacian matrix of the following digraph and $\alpha > 0$.



1. Does x(t) reach consensus as $t \to +\infty$? If yes, compute the consensus value.

· 6 his the GRNs { 1,2,3 9. Then x H) -) (w x lo) 114 where wTL=0 and wTH= I. We have

$$L = \begin{cases} +' & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -\alpha & -1 & | +\alpha \end{cases}$$

$$W_{1} - W_{2} - W_{3} = 0 \rightarrow W_{2} = W_{3}$$

$$W^{7} L = 0 \rightarrow \begin{cases} W_{1} - W_{2} - W_{3} = 0 \rightarrow W_{1} = 2W_{2} \\ -W_{1} + 2W_{2} = 0 \rightarrow \text{coherent with the first eq.} \end{cases}$$

$$W = \begin{cases} 2 & W_{2} & W_{2} & W_{2} & 0 \end{cases} \xrightarrow{i=1}^{2} \begin{cases} W_{2}^{2} | 1 \\ 2 + (1+1) & W_{2}^{2} | 1 \end{pmatrix} (2 + (1+1) W_{2}^{2} | 1 \rightarrow W_{2}^{2} | 1 \end{cases}$$
Then
$$W = \begin{cases} 2 & W_{2} & W_{2} & W_{2} & 0 \end{cases} \xrightarrow{i=1}^{2} \begin{cases} W_{2}^{2} | 1 \\ 2 + (1+1) & W_{2}^{2} | 1 \rightarrow W_{2}^{2} | 1 \end{cases}$$

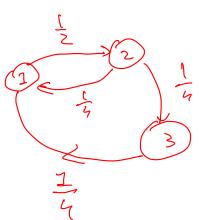
 $W = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$

The corrences state is (W+(0)) 1/2 = -2+ 2-4+ - 5= 3

2. Redefine the weights of the subgraph \tilde{G} spanned by $\{1,2,3\}$ in order to obtain average consensus on \tilde{G} . Draw \tilde{G} .

Averge consesses is guaranteed if G is belonded

A possibility is to use the weights $\mathcal{R}_{iz} = \mathcal{C}_i - \mathcal{C}_{ij}$



Problem 6.

/5

Let G be an unweighted strongly connected digraph with binary adjacency matrix $A \in \{0,1\}^{n\times n}$, $n \geq 2$. Let (λ, ν) be the dominant eigenpair, that is $A\nu = \lambda \nu$ and $\mathbb{1}_n^T \nu = 1$. Consider the matrix $P \in \mathbb{R}^{n\times n}$ with entries

$$P_{ij} = \frac{1}{\lambda} \frac{v_j}{v_i} A_{ij}, \quad i, j \in \{1, 2, \dots, n\}$$

1. Show that v > 0 and that P is row stochastic and irreducible.

Pist -- Pin = 1 vi Ais = 1

= 1 [01 - vn] [Ais = 1 Avi = 1 Avi

Piz \$0 (=> Aiz \$0. Since A is immediatele, sloopis

2. Pick $i, j \in \{1, 2, ..., n\}$ and $k \ge 1$. By considering the weighted digraph associated to P, assume there is a path of length k from i to j. Show that the product of the edge weights along the path is $\frac{1}{\lambda^k} \frac{V_j}{V_i}$.

the weight of (i,i_2) in P is $\frac{1}{\lambda} \frac{\sigma_3}{\sigma_i}$.

Path: $(i,i_2)(i_2,i_2)\dots(i_{k-1},3) \rightarrow \kappa$ edges

weight product: $\frac{1}{\lambda} \frac{\sigma_i}{\sigma_i} + \frac{1}{\lambda} \frac{\sigma_i}{\sigma_i} + \frac{1}{\lambda} \frac{\sigma_i}{\sigma_i} + \frac{1}{\lambda} \frac{\sigma_i}{\sigma_i}$